原文服务方: 自动化与仪表       
摘要:
Adaboost算法是一种被广泛应用于人脸检测的分类器学习方法,通过Haar-like特征和样本的学习和训练,形成一个强分类器,能有效地区分人脸跟非人脸.文中提出一种Adaboost结合最小割算法的人脸提取方法,该方法着眼于图像中的轮廓及肤色信息,对每个点设置一个权值,寻找一条权值最小的边界,准确提取出人脸.实验结果表明,Adaboost和最小割的人脸提取算法,分割效果较好,且耗时较小.
推荐文章
基于肤色和Adaboost算法的人脸检测
人脸检测
Adaboost 算法
Haar特征
肤色分割
基于肤色和AdaBoost算法的彩色人脸图像检测
人脸检测
肤色检测
AdaBoost
级联分类器
基于Adaboost算法和肤色验证的人脸检测研究
Adaboost算法
肤色验证
人脸检测
基于肤色统计矩和Adaboost算法的人脸检测研究
Adaboost
统计矩
HSV空间
人脸检测
智能监控
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Adaboost和最小割算法的视频人脸检测
来源期刊 自动化与仪表 学科
关键词 视频人脸检测 最小割 Adaboost算法
年,卷(期) 2010,(9) 所属期刊栏目
研究方向 页码范围 52-55
页数 分类号 TH865
字数 语种 中文
DOI 10.3969/j.issn.1001-9944.2010.09.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张涛 贵阳学院物理与电子信息科学系 10 40 3.0 6.0
2 余卫宇 华南理工大学电子与信息学院 15 227 7.0 15.0
3 李植炜 华南理工大学电子与信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (1)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频人脸检测
最小割
Adaboost算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化与仪表
月刊
1001-9944
12-1148/TP
大16开
1981-01-01
chi
出版文献量(篇)
3994
总下载数(次)
0
总被引数(次)
18195
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导