基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
设S={x1,x2,…,xn}是一个正整数的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素定义为1/(xi,xj)a,其中(xi,xj)a表示S中的元素xi与xj的最大公因数的a次幂,则称这个矩阵是定义在S上的倒数幂GCD矩阵,用(1/Sa)表示.类似可定义倒数幂LCM矩阵[1/Sa].作者得到了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵的行列式公式,并由此证明了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵均是非奇异的.
推荐文章
定义在三个拟互素因子链上的倒数幂矩阵的非奇异性
三个拟互素因子链
最大型因子
倒数幂GCD矩阵
倒数幂LCM矩阵
定义在三个互素因子链上的交错幂GCD和交错幂LCM矩阵的整除性
整除
三个互素因子链
交错幂GCD矩阵
交错幂LCM矩阵
惟一因子分解整环上的GCD幂矩阵与LCM幂矩阵
GCD幂矩阵
LCM幂矩阵
因子
UFD
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 两个拟互素因子链上倒数幂GCD与倒数幂LCM矩阵的非奇异性
来源期刊 四川大学学报(自然科学版) 学科 数学
关键词 拟互素因子链 最大型因子 倒数幂GCD矩阵 倒数幂LCM矩阵
年,卷(期) 2012,(5) 所属期刊栏目 数学
研究方向 页码范围 965-969
页数 分类号 O153
字数 2586字 语种 中文
DOI 10.3969/j.issn.0490-6756.2012.05.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林宗兵 攀枝花学院数学与计算机学院 15 38 3.0 5.0
2 谭千蓉 攀枝花学院数学与计算机学院 29 32 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (7)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1875(4)
  • 参考文献(1)
  • 二级参考文献(3)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(5)
  • 参考文献(1)
  • 二级参考文献(4)
1993(4)
  • 参考文献(1)
  • 二级参考文献(3)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(9)
  • 参考文献(2)
  • 二级参考文献(7)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(11)
  • 参考文献(2)
  • 二级参考文献(9)
2008(11)
  • 参考文献(2)
  • 二级参考文献(9)
2009(10)
  • 参考文献(1)
  • 二级参考文献(9)
2010(11)
  • 参考文献(2)
  • 二级参考文献(9)
2011(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
拟互素因子链
最大型因子
倒数幂GCD矩阵
倒数幂LCM矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导