基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对柴油机气阀机构七种状态下的排气噪声信号建立AR模型,以AR模型的自回归参数作为故障识别的特征向量,建立基于极限学习机的柴油机气阀故障诊断模型,并与反向传播神经网络算法、径向基网络算法和基于支持向量机的诊断模型相比较.试验结果表明,排气噪声信号可用于柴油机气阀故障的诊断,且基于极限学习机的诊断模型与其他三种算法的分类正确率均可达到95%以上,但在学习速度上,极限学习机具有明显的优势.
推荐文章
基于时序分析和K-L信息距离的柴油机气阀机构故障诊断
柴油机
气阀机构
故障诊断
时间序列分析
K-L信息距离
基于神经网络的柴油机故障诊断方法
神经网络
BP算法
柴油机
故障诊断
基于改进人工免疫和神经网络的柴油机故障诊断
柴油机
故障诊断
BP算法
人工免疫
基于BP神经网络与时间序列分析的柴油机故障诊断
神经网络
柴油机
故障诊断
时间序列分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于排气噪声的柴油机气阀故障诊断
来源期刊 噪声与振动控制 学科 工学
关键词 声学 排气噪声 极限学习机 故障诊断 柴油机 AR模型
年,卷(期) 2012,(5) 所属期刊栏目
研究方向 页码范围 173-176
页数 分类号 TK428
字数 4301字 语种 中文
DOI 10.3969/j.issn.1006-1335.2012.05.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张光 军械工程学院火炮工程系 10 27 3.0 4.0
2 张英堂 军械工程学院火炮工程系 101 884 16.0 23.0
3 李志宁 军械工程学院火炮工程系 48 304 9.0 15.0
4 尹刚 军械工程学院火炮工程系 23 146 7.0 11.0
5 李杰仁 武汉军代局南阳军代室 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (47)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
声学
排气噪声
极限学习机
故障诊断
柴油机
AR模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
噪声与振动控制
双月刊
1006-1355
31-1346/TB
大16开
上海市华山路1954号上海交通大学
4-672
1981
chi
出版文献量(篇)
4977
总下载数(次)
4
总被引数(次)
36734
论文1v1指导