原文服务方: 河南科学       
摘要:
构建基于N分布和t分布下的GARCH(1,1)和SV模型,并通过实证分析探讨了上证指数和深证成指收益序列的波动性.分析结果表明,GARCH(1,1)类模型和SV类模型能较好地拟合沪深股市收益率的波动,并指出我国股市存在较强的波动持续性;而基于t分布的各模型能有效地刻画股市的厚尾性;此外,通过计算VaR值,说明深市比沪市的风险更大,且SV类模型能更准确地反映收益率的风险特性.
推荐文章
基于Archimedean Copula-GARCH模型的沪深股市相关性分析
Copula函数
ArchimedeanCopula-GARCH模型
相关性
收益率
模型选择
基于GED-GARCH族模型沪深股指波动性研究
GED-GARCH族模型
风险溢价
杠杆性
溢出效应
基于GARCH-MIDAS模型对股市波动率预测
GARCH-MIDAS
极端冲击
波动率
预测
结构突变对股市收益波动性的影响——来自中国沪深股市的经验分析
结构突变
结构突变点
股市收益
收益波动性
波动长记忆性
波动聚类性
日收益率
FIGARCH模型
修正的ICSS算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 沪深股市的波动性分析--基于t分布下GARCH和SV模型的比较
来源期刊 河南科学 学科
关键词 t分布 GARCH(1,1)模型 SV模型 VaR
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 400-403
页数 分类号 O212.8
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏越良 华南理工大学工商管理学院 15 148 7.0 12.0
2 杨义迅 华南理工大学工商管理学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (10)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (1)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
t分布
GARCH(1,1)模型
SV模型
VaR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科学
月刊
1004-3918
41-1084/N
大16开
1982-01-01
chi
出版文献量(篇)
7317
总下载数(次)
0
总被引数(次)
26314
论文1v1指导