基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蛋白质折叠识别算法是蛋白质三维结构预测的重要方法之一,该方法在生物科学的许多方面得到卓有成效的应用。在过去的十年中,我们见证了一系列基于不同计算方式的蛋白质折叠识别方法。在这些计算方法中,机器学习和序列谱-序列谱比对是两种在蛋白质折叠中应用较为广泛和有效的方法。除了计算方法的进展外,不断增大的蛋白质结构数据库也是蛋白质折叠识别的预测精度不断提高的一个重要因素。在这篇文章中,我们将简要地回顾蛋白质折叠中的先进算法。另外,我们也将讨论一些可能可以应用于改进蛋白质折叠算法的策略。
推荐文章
一种基于多层PPI网络的关键蛋白质识别方法
蛋白质相互作用网络
多层网络
加权中心性方法
关键蛋白质识别
蛋白质体外折叠技术研究现状与展望
蛋白质折叠
生物工程
蛋白质工程
利用体积排阻色谱法进行蛋白质折叠
体积排阻色谱
折叠
分离
溶菌酶
圆二色性光谱
蛋白质结构预测综述
蛋白质结构预测
深度学习
同源建模
自由建模
综述
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蛋白质折叠识别方法综述
来源期刊 生物信息学 学科 生物学
关键词 折叠识别 序列比对 结构预测
年,卷(期) 2015,(4) 所属期刊栏目 综述
研究方向 页码范围 231-238
页数 8页 分类号 Q51
字数 语种 中文
DOI 10.3969/j.issn.1672-5565.2015.04.05
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林娟 福州大学生物科学与工程学院 110 610 12.0 18.0
2 蔡伟文 福州大学生物科学与工程学院 6 4 2.0 2.0
3 鄢仁祥 福州大学生物科学与工程学院 2 4 2.0 2.0
4 王晓峰 山西师范大学计算机与数学学院 1 2 1.0 1.0
5 许伟明 福州大学生物科学与工程学院 2 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (39)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(5)
  • 参考文献(5)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(4)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(5)
  • 参考文献(5)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
折叠识别
序列比对
结构预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物信息学
季刊
1672-5565
23-1513/Q
大16开
黑龙江省哈尔滨市西大直街92号哈尔滨工业大学邵逸夫科学馆一楼
14-14
2003
chi
出版文献量(篇)
937
总下载数(次)
6
总被引数(次)
4610
论文1v1指导