基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高非线性变换的近似精度,提出了一种高阶无迹变换(High order Unscented Transform,HUT)机制,利用HUT确定采样点并进行数值积分去近似状态的后验概率密度函数,建立了高阶无迹卡尔曼滤波(High-order Unscented Kalman Filter,HUKF)算法.进一步的为了解决非线性、非高斯系统的状态估计问题,将HUKF与高斯和滤波(Gaussian Sum Filter,GSF)相结合,提出了一种高斯和高阶无迹卡尔曼滤波算法(Gaussian Sum High order Unscented Kalman filter,GS-HUKF),该算法的核心思想是利用一组高斯分布的和去近似状态的后验概率密度,同时针对每一个高斯分布采用高阶无迹卡尔曼滤波算法进行估计.数值仿真实验结果表明,提出的HUT机制与普通的无迹变换(Unscented Transform,UT)相比,具有更高的近似精度;提出的GS-HUKF与传统的GSF以及高斯和粒子滤波器(Gaussian Sum Particle Filter,GS-PF)相比,兼容了二者的优点,即具有计算复杂度低和估计精度高的特性.
推荐文章
衰减记忆无迹卡尔曼粒子滤波算法研究
粒子滤波算法
无迹卡尔曼粒子滤波算法
衰减记忆
基于无迹卡尔曼滤波的无人机跟踪算法
四基站定位
无迹卡尔曼滤波算法
跟踪预测
基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法
粒子滤波
无迹卡尔曼滤波
权值优化
样本贫化
含有多普勒频率的无迹卡尔曼滤波
非线性卡尔曼滤波
无迹卡尔曼滤波
多普勒频率
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高斯和高阶无迹卡尔曼滤波算法
来源期刊 电子学报 学科 工学
关键词 卡尔曼滤波 无迹卡尔曼滤波 高斯和 非线性非高斯
年,卷(期) 2017,(2) 所属期刊栏目 学术论文
研究方向 页码范围 424-430
页数 7页 分类号 TN713
字数 6239字 语种 中文
DOI 10.3969/j.issn.0372-2112.2017.02.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程向红 东南大学仪器科学与工程学院 67 663 14.0 22.0
2 李双喜 安徽科技学院电气与电子工程学院 30 69 5.0 7.0
3 王磊 安徽科技学院电气与电子工程学院 14 45 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (16)
节点文献
引证文献  (14)
同被引文献  (48)
二级引证文献  (7)
1972(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(6)
  • 二级引证文献(0)
2019(9)
  • 引证文献(5)
  • 二级引证文献(4)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
卡尔曼滤波
无迹卡尔曼滤波
高斯和
非线性非高斯
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导