摘要:
目的 由于CV模型仅利用了图像的全局信息,其对灰度不均匀图像的分割效果不理想,同时在分割弱边缘和弱纹理图像时,优化易陷入局部最优从而导致分割效率低下,且对初始位置的选择较为敏感.针对这些问题,提出一种结合分数阶微分和图像局部信息的CV模型.方法 首先将分数阶梯度信息融入图像的局部信息中,用来替代CV模型的整数阶全局信息,并建立自适应计算分数阶最佳阶次的数学模型,然后在模型中加入符号距离的约束项.结果 一方面,用局部信息代替全局信息,可以在一定程度上解决CV模型对灰度不均匀图像分割效果不理想的问题.另一方面,将Grünwald-Letnikov分数阶梯度信息融合到局部信息中,当分数阶阶次0<α<1时,增加了图像灰度不均匀、弱边缘、弱纹理区域的梯度信息,从而增加了演化驱动力避免演化曲线陷入局部最优,有效地解决了图像因灰度变化不大导致演化曲线驱动力小的问题,在一定程度上解决了模型对初始轮廓位置选择和对噪声敏感的问题.同时为了解决人工选取最佳分数阶阶次费时费力的问题,根据图像的梯度模值和信息熵建立计算分数阶最佳阶次的数学模型,将此自适应分数阶模型应用到算法之中,以自适应确定最佳分数阶阶次.此外,为了避免模型的重新初始化,在模型中加入符号距离的约束项,从而提高了曲线的演化效率.结论 理论分析和实验结果均表明,该算法能够较好地分割灰度不均匀、弱边缘和弱纹理区域的图像,并能根据图像特征自适应确定最佳分数阶阶次,提高了分割精度和分割效率,且对初始轮廓位置选择及噪声均具有一定的鲁棒性.