基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 针对目前基于稀疏表示的超分辨率重建算法中对字典原子的选取效率低、图像重建效果欠佳的问题,本文提出了核方法与一种高效的字典原子相关度筛选方法相融合的图像超分辨重建算法,充分利用字典原子与图像的相关度,选用对重建的贡献最大的原子来提高重建的效率和效果.方法 首先,通过预处理高分辨率图像得到高、低分辨率图像样本集,再用字典学习得到高、低分辨率字典对;然后,对字典原子进行非相关处理提高字典原子的表达能力;此后,再利用低分辨率字典,引入核方法和字典原子筛选方法进行稀疏表示,设置阈值筛选高相关原子,低相关度原子对重建贡献度低,在迭代过程中耗费计算量,所以舍去低相关原子,再对普通原子进行正则化处理后加入支撑集,处理后的字典原子对于重建具有很好的表达能力;最后,利用处理后的字典原子对低分辨率图求解稀疏表示问题得到稀疏表示系数,结合高分辨率字典重建出高分辨率图像.结果 实验通过与其他学习算法对比,得到结构相似度(SSIM)、峰值信噪比(PSNR)以及重建时间的结果.实验结果表明:本文方法与对比方法相比,图像重建时间提高了22.2%;图像结构相似度提高了9.06%;峰值信噪比提高了2.30 dB.原有的基于字典学习的方法对于字典选取具有一定的盲目性,所选取的原子与重建图像相关度较低,使重建效果差,本文方法获得的字典原子可以减少稀疏表示过程的时耗,同时提高稀疏表示的精度.引入核方法,改善经典算法中对原子选取的低精度问题,经实验证明,本方法能有效提高重建算法性能.结论 实验结果表明,图像的稀疏表示过程的重建时间明显减少,重建效果也有一定的提高,并且在训练样本较少的情况下同样有良好的重建效率和效果,适合在实际中使用.
推荐文章
非局部稀疏表示正则化的磁共振图像重建
图像重建
压缩感知
核磁共振成像
非局部相似性
稀疏表示
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
融合低秩和稀疏表示的图像超分辨率重建算法
超分辨率重建
低秩矩阵恢复
稀疏重建
噪声
字典学习
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 核稀疏表示和原子相关度的图像重建
来源期刊 中国图象图形学报 学科 工学
关键词 稀疏表示 超分辨率重建 核方法 原子相关度 非相关处理
年,卷(期) 2018,(9) 所属期刊栏目 图像处理和编码
研究方向 页码范围 1285-1292
页数 8页 分类号 TP391
字数 4793字 语种 中文
DOI 10.11834/jig.180011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程德强 中国矿业大学信息与控制工程学院 59 377 10.0 17.0
2 陈亮亮 中国矿业大学信息与控制工程学院 4 21 3.0 4.0
3 邵丽蓉 中国矿业大学信息与控制工程学院 2 7 2.0 2.0
4 刘威龙 中国矿业大学信息与控制工程学院 2 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (35)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏表示
超分辨率重建
核方法
原子相关度
非相关处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导