基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 传统人脸检测方法 因人脸多姿态变化和人脸面部特征不完整等问题,导致检测效果不佳.为解决上述问题,提出一种两层级联卷积神经网络(TC_CNN)人脸检测方法 .方法 首先,构建两层卷积神经网络模型,利用前端卷积神经网络模型对人脸图像进行特征粗略提取,再利用最大值池化方法对粗提取得到的人脸特征进行降维操作,输出多个疑似人脸窗口;其次,将前端粗提取得到的人脸窗口作为后端卷积神经网络模型的输入进行特征精细提取,并通过池化操作得到新的特征图;最后,通过全连接层判别输出最佳检测窗口,完成人脸检测全过程.结果 实验选取FDDB人脸检测数据集中包含人脸多姿态变化以及人脸面部特征信息不完整等情况的图像进行测试,TC_CNN方法人脸检测率达到96.39%,误检率低至3.78%,相比当前流行方法在保证算法效率的同时检测率均有提高.结论 两层级联卷积神经网络人脸检测方法 能够在人脸多姿态变化和面部特征信息不完整等情况下实现精准检测,保证较高的检测率,有效降低误检率,方法具有较好的鲁棒性和泛化能力.
推荐文章
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于选择性搜索和卷积神经网络的人脸检测
卷积神经网络
选择性搜索
人脸检测
Gabor核
基于卷积神经网络的人脸图像美感分类
卷积神经网络
LeNet-5
人脸识别
美感分类
图像处理
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 两层级联卷积神经网络的人脸检测
来源期刊 中国图象图形学报 学科 工学
关键词 人脸检测 卷积神经网络 十折交叉验证 两层级联卷积神经网络 最大值池化
年,卷(期) 2019,(2) 所属期刊栏目 图像分析和识别
研究方向 页码范围 203-214
页数 12页 分类号 TP391
字数 6327字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张海涛 辽宁工程技术大学软件学院 33 200 8.0 12.0
2 李美霖 辽宁工程技术大学软件学院 1 10 1.0 1.0
3 董帅含 辽宁工程技术大学软件学院 7 52 3.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (206)
参考文献  (9)
节点文献
引证文献  (10)
同被引文献  (39)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(8)
  • 参考文献(4)
  • 二级参考文献(4)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(6)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(5)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(5)
  • 引证文献(5)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸检测
卷积神经网络
十折交叉验证
两层级联卷积神经网络
最大值池化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导