基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种有效的人脸表示与识别的方法.为了能有效地保持各个子块间的空间关系,该方法首先对图像进行分块,对分块后各子样本集使用二维PCA方法分别抽取图像行间信息和列间信息,然后将子块的行和列特征融合成子复数特征矩阵.再利用复二维判别分析C2DLDA方法,从子复数特征矩阵中进一步进行特征提取,最后把各子复特征矩阵拼成相应原始图像的特征矩阵.实验结果表明,该方法降低了特征的维数,减少了表情和光照等因素对人脸识别准确率的影响,获得了较好的识别性能.
推荐文章
基于二维图像直接线性判别分析的人脸识别算法研究
线性判别分析
主分量分析
人脸识别
改进的二维主成分分析的人脸识别新算法
二维主成分分析
人脸识别
改进的感知哈希技术
多角度旋转
图像特征提取
角度自矫正
基于子模式双向二维线性判别分析的人脸识别
人脸识别
特征抽取
双向二维线性判别分析
子模式双向二维线性判别分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于子模式的二维主成分分析融合复判别分析的人脸识别
来源期刊 佛山科学技术学院学报(自然科学版) 学科 工学
关键词 人脸识别 主成分分析 复二维判别分析 特征融合
年,卷(期) 2020,(4) 所属期刊栏目 信息科学
研究方向 页码范围 70-76
页数 7页 分类号 TP391.41
字数 4031字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谭立辉 广东工业大学应用数学学院 10 8 2.0 2.0
2 史钰潮 广东工业大学应用数学学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (9)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(8)
  • 参考文献(2)
  • 二级参考文献(6)
2005(11)
  • 参考文献(3)
  • 二级参考文献(8)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
主成分分析
复二维判别分析
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佛山科学技术学院学报(自然科学版)
双月刊
1008-0171
44-1438/N
大16开
广东省佛山市江湾一路18号
1988
chi
出版文献量(篇)
2495
总下载数(次)
2
总被引数(次)
7770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导