基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采集主动通信流失客户的相关信息,搭建基于LM神经网络与随机森林的客户分类模型.对两个模型的优劣性进行ROC曲线评估,最后输出流失规则.模型能够对有异动的客户进行提前识别、预警,从而降低了客户的流失,挽留住价值客户,有效改善公司服务质量.
推荐文章
电信客户流失的组合预测模型
客户流失
预测模型
电信企业
决策树C5.0
BP神经网络
Logistic回归算法
C4.5算法在移动通信行业客户流失分析中的应用
数据挖掘
决策树
C4.5算法
客户流失
基于数据挖掘的移动通信业客户流失分析研究
数据挖掘
移动通信业
决策树
客户流失
SVM在移动通信客户流失预测中的应用研究
支持向量机(SVM)
客户流失
数据挖掘
决策树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 构建通信流失客户识别模型
来源期刊 电信快报 学科
关键词 LM神经网络 随机森林 流失
年,卷(期) 2020,(11) 所属期刊栏目 论文选粹
研究方向 页码范围 42-46
页数 5页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (164)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LM神经网络
随机森林
流失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电信快报
月刊
1006-1339
31-1273/TN
大16开
上海市平江路48号1号楼3层
4-208
1964
chi
出版文献量(篇)
2317
总下载数(次)
8
论文1v1指导