基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 针对基于Haar-like特征的Adaboost人脸检测算法,在应用于视频流时训练的时间较长,以及检测效率较低的问题,提出了一种基于区间阈值的Adaboost人脸检测算法.方法 通过运行传统的Adaboost算法对人脸图像Haar-like特征值进行提取分析后,对人脸样本与非人脸样本特征值进行比较,发现在某一特定的特征值区间内,人脸和非人脸区域能够得到准确区分,根据此特性,进行分类器的选择,在简化弱分类器计算步骤的同时,降低训练时间,提高对人脸的识别能力.除此之外,弱分类器的增强通过Adaboost算法的放大使得强分类器分类精度提高,与级联结构的配合使用也提升了最终模型检测人脸的准确率.结果 利用MIT(Massachusetts Institute of Technology)标准人脸库对改进Adaboost算法的性能进行验证,通过实验验证结果可知,改进后的Adaboost人脸检测算法训练速度提升为原来的1.44倍,检测率上升到94.93%,虚警率下降到6.03%.并且将改进算法在ORL(Olivetti Research Laboratory)、FERET(face recognition technology)以及CMU Multi-PIE(the CMU Multi-PIE face database)这3种标准人脸库中,分别与SVM(support vector machine)、DL(deep learning)、CNN(convolutional neural networks)以及肤色模型等4种算法进行了人脸检测对比实验,实验结果显示,改进后的Adaboost算法在进行人脸检测时,检测率提升了2.66%,训练所需时间减少至624.45 s,检测效果明显提升.结论 提出的基于区间阈值的Adaboost人脸检测算法,在分类器的训练和人脸检测方面都比传统的Adaboost算法性能更高,能够更好地满足人员较密集处(如球场等地)对多人脸同时检测的实际需求.
推荐文章
基于肤色与新型Haar-Like特征的人脸检测算法研究
肤色检测
亮度
光照
新型特征
准确率
结合方向纹理熵的Haar-like特征在线boosting跟踪算法
目标跟踪
在线boosting算法
类Haar特征
灰度共生矩阵
方向纹理熵
基于双阈值运动区域分割的AdaBoost行人检测算法
双阈值运动区域分割
AdaBoost学习算法
Haar-like弱矩形特征
强分类器
基于新Haar-like特征的多角度人脸检测
Haar-like特征
特征计算
连续Adaboost算法
金字塔式结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Haar-like特征双阈值Adaboost人脸检测
来源期刊 中国图象图形学报 学科 工学
关键词 人脸检测 Adaboost算法 统计分析 Haar-like特征 区间阈值
年,卷(期) 2020,(8) 所属期刊栏目 图像理解和计算机视觉
研究方向 页码范围 1618-1626
页数 9页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱勇 45 309 10.0 16.0
2 刘禹欣 1 0 0.0 0.0
3 孙结冰 4 12 2.0 3.0
4 王一博 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (17)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(10)
  • 参考文献(1)
  • 二级参考文献(9)
2018(12)
  • 参考文献(7)
  • 二级参考文献(5)
2019(8)
  • 参考文献(7)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸检测
Adaboost算法
统计分析
Haar-like特征
区间阈值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导