作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于我国电力系统自动化水平较低,难以实现对窃电行为的精确跟踪和反馈,将小波神经网络与反窃电评价指标体系结合构建了窃电系统神经网络模型.模型采用典型的输入、隐含、输出三层网络结构,确定各层节点数分别为8个、7个、1个,为满足窃电信息追踪的非线性映射关系,采用连续可微的Sigmoid函数作为隐层节点激活函数,采用线性型激活函数作为输出层激活函数.通过选取某一用户一定时间段的用电信息进行仿真分析,结果表明:建立的窃电网络模型获得的窃电嫌疑系数与实际情况基本一致,输入和输出关系正确,能够对窃电情况进行有效评价.
推荐文章
小波神经网络在反窃电系统中的应用研究
小波神经网络
反窃电
指标评价体系
窃电嫌疑因子
小波神经网络在故障诊断中的应用
故障诊断
小波分析
神经网络
小波神经网络
基于小波神经网络的控制方法及其应用研究
小波神经网络
系统辨识
控制系统
学习算法
小波神经网络预测在住宅市场中应用
小波神经网络
预测模型
房地产市场
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小波神经网络在反窃电系统中的应用研究
来源期刊 微型电脑应用 学科 工学
关键词 神经网络 防窃电 窃电嫌疑系数
年,卷(期) 2020,(7) 所属期刊栏目 研究与设计
研究方向 页码范围 104-106
页数 3页 分类号 TP311
字数 2283字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许长乐 华北电力大学科技学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (138)
共引文献  (129)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(14)
  • 参考文献(0)
  • 二级参考文献(14)
2011(12)
  • 参考文献(1)
  • 二级参考文献(11)
2012(13)
  • 参考文献(1)
  • 二级参考文献(12)
2013(14)
  • 参考文献(0)
  • 二级参考文献(14)
2014(26)
  • 参考文献(1)
  • 二级参考文献(25)
2015(13)
  • 参考文献(4)
  • 二级参考文献(9)
2016(10)
  • 参考文献(3)
  • 二级参考文献(7)
2017(7)
  • 参考文献(5)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(6)
  • 参考文献(0)
  • 二级参考文献(6)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
防窃电
窃电嫌疑系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
论文1v1指导