基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将蚁群算法与人工势场算法相结合,提出了一种新的寻优算法.在算法的设计过程中,首先引入人工势场法进行蚁群算法初始信息素的分配,避免了在迭代初始阶段,信息素太少与启发信息不成比例而使得蚂蚁集中在启发信息最强的路径上,从而陷入局部最优的问题.其次,通过引入势场引导函数改进蚁群算法的状态转移函数,避免了在三维空间中蚂蚁搜索容易忽视节点周围障碍物因素,从而陷入盲目选择导致搜索时间过长的问题.将优化算法应用于无人机三维航迹规划问题的求解,并通过仿真验证了有效性.
推荐文章
改进蚁群算法在全局路径规划中的应用
蚁群算法
全局路径规划
栅格法
改进方法
基于改进启发式蚁群算法的无人机自主航迹规划
无人机
航迹规划
Dijkstra 算法
Logistic 混沌
蚁群算法
模拟退火算法
基于Voronoi图和动态自适应蚁群算法的UAV航迹规划
航迹规划
Voronoi图
蚁群算法
动态自适应
信息素
基于改进型蚁群算法的AUV路径规划
路径规划
蚁群算法
再励学习
Dijkstra算法
信息素更新
自治水下机器人
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群算法的改进设计及在航迹规划中的应用
来源期刊 航空学报 学科 航空航天
关键词 蚁群算法 人工势场 优化 无人机 航迹规划
年,卷(期) 2020,(z2) 所属期刊栏目
研究方向 页码范围 210-216
页数 7页 分类号 V279
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (1)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(7)
  • 参考文献(2)
  • 二级参考文献(5)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
人工势场
优化
无人机
航迹规划
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
航空学报
月刊
1000-6893
11-1929/V
大16开
北京市海淀区学院路37号
82-148
1965
chi
出版文献量(篇)
6543
总下载数(次)
27
论文1v1指导