作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种基于ICA的眉毛识别方法.在经过预处理的眉毛图像上,先用ICA算法对眉毛图像进行特征提取,得到其特征向量,然后用K-近邻算法进行识别,最后经过实验验证,眉毛识别的识别率可以达到94.7%.再一次验证了,眉毛用于生物特征识别的可行性.
推荐文章
基于ICA和线性回归的多姿态人脸识别方法
独立成分分析
线性回归
姿态变换
人脸合成
基于PCA的眉毛识别方法研究
生物特征识别
眉毛识别
主成分分析
傅里叶变换
特征提取
基于ICA和FLD相结合的人脸识别
主成分分析
独立成分分析
Fisher线性辨别分析
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ICA的眉毛识别方法研究
来源期刊 信息记录材料 学科
关键词 独立分量分析 眉毛识别 K-近邻法则
年,卷(期) 2021,(2) 所属期刊栏目 记录:数据与存储
研究方向 页码范围 196-198
页数 3页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (95)
共引文献  (16)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(10)
  • 参考文献(2)
  • 二级参考文献(8)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(7)
  • 参考文献(1)
  • 二级参考文献(6)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
独立分量分析
眉毛识别
K-近邻法则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息记录材料
月刊
1009-5624
13-1295/TQ
大16开
河北省保定市乐凯南大街6号
18-185
1978
chi
出版文献量(篇)
9919
总下载数(次)
46
总被引数(次)
13955
论文1v1指导