基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题.为了对肺CT图像的肺及肺病变区域分割方法的现状进行全面研究,本文综述了近年国内外发表的相关文献:对基于区域和活动轮廓的肺CT图像传统分割方法的优缺点进行比较与总结,传统的肺CT图像分割方法因其实现原理简单且分割速度快等优点,早期使用较多,但其存在分割精度不高的缺点,目前仍有不少基于传统方法的改进策略;重点分析了基于卷积神经网络(convolutional neural network,CNN)、全卷积网络(fully convolutional network,FCN)、U-Net和生成对抗网络(generative adversarial network,GAN)的肺CT图像分割网络结构改进模型的研究进展,基于深度学习的分割方法具有分割精度高、迁移学习能力强和鲁棒性高等优点,特别是在辅助诊断COVID-19病例时,基于深度学习方法的性能明显优于基于传统方法的性能;介绍肺及肺病变区域分割的常用数据集和评价指标,在解决如COVID-19数据样本量少等问题时,使用GAN以合成高质量的对抗性图像用以扩充数据集,从而增加训练样本的数量和多样性;讨论了肺CT图像的肺及肺病变区域的高精度分割策略的研究趋势、现有挑战和未来的研究方向.
推荐文章
基于改进模糊聚类算法的CT图像病变区域分割
改进模糊聚类算法
CT图像
病变区域分割
隶属度矩阵
基于CT影像的肺组织分割方法综述
肺组织分割
肺实质分割
肺血管分割
肺气道分割
肺叶分割
肺结节分割
肺部病灶分割
针对肺结节检测的肺实质CT图像分割
图像分割
连通域
肺实质
CT
肺结节
CT影像中边缘病变的二维肺野分割研究
肺野
高密度病变
分割
胸腔CT影像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 CT图像肺及肺病变区域分割方法综述
来源期刊 中国图象图形学报 学科 工学
关键词 计算机断层扫描(CT) 医学图像分割 肺CT图像分割 肺病变区域 深度学习 新冠肺炎(COVID-19)
年,卷(期) 2022,(3) 所属期刊栏目 综述|Review
研究方向 页码范围 722-749
页数 28页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机断层扫描(CT)
医学图像分割
肺CT图像分割
肺病变区域
深度学习
新冠肺炎(COVID-19)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江西省自然科学基金
英文译名:Natural Science Foundation of Jiangxi Province
官方网址:http://www.jxstc.gov.cn/ReadNews.asp?NewsID=861
项目类型:
学科类型:
论文1v1指导