作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文研究了一种给定的复杂网络结构识别问题。利用网络结构的稀疏性质,提出了一个带有‘1正则化的最小二乘模型。数值仿真表明该算法对带噪声或不带噪声的较大型网络结构的识别是非常有效的。
推荐文章
基于稀疏深度置信网络的图像分类识别研究
焊缝缺陷
深度学习
稀疏约束
深度置信网络
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于改进的稀疏深度信念网络的人脸识别方法
稀疏编码
特征提取
深度学习
深度信念网络
稀疏受限玻尔兹曼机
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 稀疏复杂网络的识别
来源期刊 数学杂志 学科
关键词 复杂网络 结构识别 ‘1正则化 加权迭代最小二乘 牛顿方法
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 763-772
页数 10页 分类号
字数 554字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 柯婷婷 武汉大学数学与统计学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (3)
参考文献  (41)
节点文献
引证文献  (4)
同被引文献  (2)
二级引证文献  (7)
1990(2)
  • 参考文献(2)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(3)
  • 参考文献(3)
  • 二级参考文献(0)
2003(3)
  • 参考文献(3)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(5)
  • 参考文献(5)
  • 二级参考文献(0)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
复杂网络
结构识别
‘1正则化
加权迭代最小二乘
牛顿方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学杂志
双月刊
0255-7797
42-1163/O1
16开
武汉大学
38-71
1981
chi
出版文献量(篇)
2723
总下载数(次)
2
论文1v1指导