基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在基于视觉的自动驾驶环境感知中,路面阴影、雨水、污渍和反光会对车道线识别和车辆导航造成干扰,针对此问题提出了一种基于逆投影映射(IPM)和边缘图像过滤的改进车道线识别方法.通过逆投影方法可以得到原始道路图像的鸟瞰图像,很大程度上增强了车道线的视觉特性并减少了干扰.同时提出迭代聚类分割方法对IPM图像中的灰度值进行分析,并保留与车道线颜色和形态特征最为接近的灰度点作为车道线边缘.随后提出一种搜索统计边缘图像中连续边缘区域的方法,通过分析边缘点并保留最长区域实现过滤道路干扰因素的目的.最后将该算法与其他常用车道线检测算法进行对比.研究结果表明:该方法可以更好地过滤路面各种干扰因素,有效增强干扰环境下识别模糊车道线、实车道线、虚车道线、弯车道线的能力,大幅提高了自动驾驶环境中的车道保持能力,并且由于该方法相比其他方法能够更加有效地去除路面干扰区域,因此识别车道线的速度得到大幅提高,可以满足自动驾驶对于实时性的要求.
推荐文章
基于视觉的缩微车车道线检测
数学形态学
阈值分割
最小二乘法
基于多传感融合的车道线检测与跟踪方法的研究
视觉传感器
车道线检测
车道线跟踪
车道级高精度地图
夜间车道线检测的研究
车道线检测
图像增强
边缘检测
霍夫变换
非线性拉伸
双边滤波
基于改进Hough变换的车道线检测技术
车道线检测
Hough变换
图像分类
感兴趣区域
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于IPM和边缘图像过滤的多干扰车道线检测
来源期刊 中国公路学报 学科 交通运输
关键词 交通工程 多干扰车道线检测 自适应车道线边缘提取 非车道线干扰过滤
年,卷(期) 2020,(5) 所属期刊栏目 交通工程
研究方向 页码范围 153-164
页数 12页 分类号 U495
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵祥模 长安大学信息工程学院 171 1125 16.0 25.0
2 吴骅跃 长安大学信息工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (20)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(11)
  • 参考文献(3)
  • 二级参考文献(8)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通工程
多干扰车道线检测
自适应车道线边缘提取
非车道线干扰过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国公路学报
月刊
1001-7372
61-1313/U
大16开
西安市南二环路中段长安大学内
52-194
1988
chi
出版文献量(篇)
3614
总下载数(次)
9
总被引数(次)
77339
论文1v1指导