基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,深度学习在计算机视觉领域的应用取得了突破性进展,但基于深度学习的视频多目标跟踪(Multiple object tracking,MOT)研究却相对甚少,而鲁棒的关联模型设计是基于检测的多目标跟踪方法的核心.本文提出一种基于深度神经网络和度量学习的关联模型:采用行人再识别(Person re-identification,Re-ID)领域中广泛使用的度量学习技术和卷积神经网络(Convolutional neural networks,CNNs)设计目标外观模型,即利用三元组损失函数设计一个三通道卷积神经网络,提取更具判别性的外观特征构建目标外观相似度;再结合运动模型计算轨迹片间的关联概率.在关联策略上,采用匈牙利算法,首先以逐帧关联方式得到短小可靠的轨迹片集合,再通过自适应时间滑动窗机制多级关联,输出各目标最终轨迹.在2DMOT2015、MOT16公开数据集上的实验结果证明了所提方法的有效性,与当前一些主流算法相比较,本文方法取得了相当或者领先的跟踪效果.
推荐文章
基于PSO-SA的多目标跟踪数据关联算法研究
数据关联
多目标跟踪
粒子群算法
模拟退火算法
基于多目标跟踪的航迹关联及滤波与预测分析
多目标跟踪
航迹关联
滤波与预测
多目标跟踪中基于特征辅助的概率数据关联算法
多目标跟踪
特征辅助跟踪
广义概率数据关联
密集杂波
多目标跟踪数据关联及其改进算法
多目标跟踪
数据关联
后验概率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的多目标跟踪关联模型设计
来源期刊 自动化学报 学科
关键词 多目标跟踪 深度学习 度量学习 关联模型 多级关联
年,卷(期) 2020,(12) 所属期刊栏目 论文与报告
研究方向 页码范围 2690-2700
页数 11页 分类号
字数 语种 中文
DOI 10.16383/j.aas.c180528
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (42)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(6)
  • 参考文献(4)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多目标跟踪
深度学习
度量学习
关联模型
多级关联
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导