基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对移动机器人视觉同步定位与地图创建中由于相机大角度转动造成的帧间匹配失败以及跟踪丢失等问题,提出了一种基于局部图像熵的细节增强视觉里程计优化算法.建立图像金字塔,划分图像块进行均匀化特征提取,根据图像块的信息熵判断其信息量大小,将对比度低以及梯度变化小的图像块进行删除,减小图像特征点计算量.对保留的图像块进行亮度自适应调整,增强局部图像细节,尽可能多地提取能够表征图像信息的局部特征点作为相邻帧匹配以及关键帧匹配的关联依据.结合姿态图优化方法对位姿累计误差进行局部和全局优化,进一步提高移动机器人系统性能.采用TUM数据集测试验证,由于提取了更能反映物体纹理以及形状的特征属性,本文算法的运动跟踪成功率最高可提升至60%以上,并且测量的轨迹误差、平移误差以及转动误差都有所降低.与目前ORB-SLAM2系统相比,本文提出的算法不但提高了移动机器人视觉定位精度,而且满足实时SLAM的应用需要.
推荐文章
视觉里程计技术综述
视觉里程计
自主移动机器人
单目视觉里程计
立体视觉里程计
鲁棒性
实时性
精确性
视觉里程计算法研究综述
机器视觉
视觉里程计
位姿估计
视觉导航
移动机器人
深度学习
基于动态物体特征点去除的视觉里程计算法
动态场景
视觉里程计
ORB特征
KLT
运动补偿
基于RANSAC的奇异值剔除的单目视觉里程计
机器人定位
视觉里程计
特征提纯
机器视觉
SURF
RANSAC
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部熵的SLAM视觉里程计优化算法
来源期刊 自动化学报 学科
关键词 同步定位与地图创建 视觉里程计 稀疏特征 信息熵 姿态图优化
年,卷(期) 2021,(6) 所属期刊栏目 短文|Brief Paper
研究方向 页码范围 1460-1466
页数 7页 分类号
字数 语种 中文
DOI 10.16383/j.aas.c180278
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (41)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(11)
  • 参考文献(2)
  • 二级参考文献(9)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
同步定位与地图创建
视觉里程计
稀疏特征
信息熵
姿态图优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
论文1v1指导