基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在Vasicek利率模型的假设下,应用变分不等式方法分析了美式利率期权自由边界的性质.首先我们得到美式利率期权自由边界的下界,然后把自由边界问题化为变分不等式,通过引入惩罚函数证明了该变分不等式解的存在唯一性,最后证明了自由边界的单调性、有界性和C∞光滑性.
推荐文章
美式债券期权定价问题的差分方法
期权定价
差分格式
能量方法
随机利率下的脆弱期权定价
分数布朗运动
随机利率
保险精算方法
脆弱期权
二重随机游动模型下美式回望期权的实施边界渐近
有限维不可约二重随机游动
最优停时
正态累积概率
提前实施边界
渐近行为
美式垄断期权定价的数学分析
美式期权
垄断期权
期权定价
自由边界
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 美式利率期权的最佳实施边界的分析
来源期刊 应用数学和力学 学科 数学
关键词 利率期权 自由边界 变分不等式
年,卷(期) 2008,(3) 所属期刊栏目
研究方向 页码范围 369-378
页数 10页 分类号 O175.26
字数 6044字 语种 中文
DOI 10.3879/j.issn.1000-0887.2008.03.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 易法槐 华南师范大学数学科学学院 17 21 3.0 3.0
2 彭新玲 华南师范大学数学科学学院 2 0 0.0 0.0
3 陈映珊 华南师范大学数学科学学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
利率期权
自由边界
变分不等式
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学和力学
月刊
1000-0887
50-1060/O3
16开
重庆交通大学90号信箱
78-21
1980
chi
出版文献量(篇)
3740
总下载数(次)
2
总被引数(次)
22232
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导