作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
蛋白质结构预测中,采样是指在构象空间中生成具有最小自由能的状态.传统的采样方法是对自由度直接赋值.这种方法在处理较少的残基时能取得好的效果.但是对于包含100个残基以上的蛋白质结构,由于构象空间的急剧增长,难以得到理想的结构.本文引入深度学习中的HMC(Hybrid Monte Carlo)采样方法,以概率分布为依据对蛋白质的自由度进行采样,能够对包含100、200甚至更多个残基的蛋白质结构进行采样.并且,在采样的过程中加入残基间的距离约束,使得一个结构中,相对于Rosetta的ab initio最多有75%(平均40%)的残基对得到优化,满足距离约束.
推荐文章
蛋白质结构预测综述
蛋白质结构预测
深度学习
同源建模
自由建模
综述
蛋白质结构的预测及其应用
蛋白质结构
比较建模
折叠识别
从头计算
基于距离矩阵灰度图的蛋白质二级结构类型预测
蛋白质二级结构
距离矩阵
模糊K近邻
几何矩
Jackknife测试
基于改进牛顿算法的蛋白质二级结构预测
改进牛顿算法
蛋白质二级结构预测
Profile编码
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 距离约束的HMC采样算法在蛋白质结构预测中的运用
来源期刊 生物信息学 学科 工学
关键词 距离约束 HMC 采样 结构预测 蛋白质
年,卷(期) 2016,(2) 所属期刊栏目 研究快报
研究方向 页码范围 117-122
页数 6页 分类号 TP391
字数 5736字 语种 中文
DOI 10.3969/j.issn.1672-5565.2016.02.09
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕强 苏州大学江苏省计算机信息处理技术重点实验室 134 1011 15.0 26.0
2 罗升 苏州大学计算机科学与技术学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(2)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
距离约束
HMC
采样
结构预测
蛋白质
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物信息学
季刊
1672-5565
23-1513/Q
大16开
黑龙江省哈尔滨市西大直街92号哈尔滨工业大学邵逸夫科学馆一楼
14-14
2003
chi
出版文献量(篇)
937
总下载数(次)
6
总被引数(次)
4610
论文1v1指导