基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像盲解卷积研究当模糊核未知时,如何从模糊图像复原出原始清晰图像.由于盲解卷积是一个欠定问题,现有的盲解卷积算法都直接或间接地利用各种先验知识.本文提出了一种结合稀疏表示与结构自相似性的单幅图像盲解卷积算法,该算法将图像的稀疏性先验和结构自相似性先验作为正则化约束加入到图像盲解卷积的目标函数中,并利用图像不同尺度间的结构自相似性,将观测模糊图像的降采样图像作为稀疏表示字典的训练样本,保证清晰图像在该字典下的稀疏性.最后利用交替求解的方式估计模糊核和清晰图像.模拟和真实数据上的实验表明本文算法能够准确估计模糊核,复原清晰的图像边缘,并具有很好的鲁棒性.
推荐文章
基于图像自相似性的多尺度稀疏表示肺4D-CT图像超分辨率重建
四维计算机断层摄影
超分辨率重建
图像自相似性
多尺度分析
稀疏表示
基于稀疏表示和自相似学习的图像超分辨率重构
超分辨率重构
稀疏表示
附加信息
自相似学习
基于自相似性和低秩表示的有噪模糊图像盲复原算法
信息处理
低秩表示
结构自相似
盲解卷积
去噪
去模糊
基于改进PatchMatch的自相似性图像超分辨率算法
超分辨率
PatchMatch
模拟退火
自相似性
边缘相似度
图像块匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示和结构自相似性的单幅图像盲解卷积算法
来源期刊 自动化学报 学科
关键词 稀疏表示 结构自相似 盲解卷积 模糊核 去模糊
年,卷(期) 2017,(11) 所属期刊栏目 论文与报告
研究方向 页码范围 1908-1919
页数 12页 分类号
字数 9001字 语种 中文
DOI 10.16383/j.aas.2017.c160357
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖创柏 北京工业大学计算机学院 84 661 12.0 24.0
2 孙卫东 清华大学电子工程系 52 471 10.0 20.0
3 禹晶 北京工业大学计算机学院 21 218 7.0 14.0
4 常振春 清华大学电子工程系 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (28)
参考文献  (9)
节点文献
引证文献  (9)
同被引文献  (31)
二级引证文献  (9)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(8)
  • 参考文献(2)
  • 二级参考文献(6)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(8)
  • 引证文献(4)
  • 二级引证文献(4)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
稀疏表示
结构自相似
盲解卷积
模糊核
去模糊
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导