基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现对城市轨道交通突发大客流的及时预警,提出一种基于自动售检票数据的客流异常状态识别方法.首先,确定符合客流时变特性的滑动时间窗口长度以适应动态的数据环境;其次,建立深度置信网络模型以提取窗口内待检样本的客流特征,并实现样本特征模式的自适应划分;最后,将待检样本和相同模式的历史样本映射至多维特征空间,进行基于局部异常因子的客流异常状态识别.通过广州地铁的案例分析,结果表明:该方法的模式划分精度为92.5%,异常识别误检率和准确率分别为3.98%和91.9%,识别效果与异常的形式和程度相关,且受识别合格判定条件中反应时效要求的影响,整体上能够在保证较低误检率的情况下,实现对各类客流异常状态的灵敏识别.
推荐文章
基于非线性特征提取的模拟电路状态识别研究
非线性
特征提取
状态监测
支持向量机
粒子群算法
基于多任务深度特征提取及 MKPCA 特征融合的语音情感识别
语音情感识别
多任务学习
声学深度特征
语谱图特征
多核主成分分析
模式识别中的特征提取研究
模式识别
特征提取
主成分分析
基于HOG—LBP特征提取的人脸识别研究
梯度方向直方图
局部二值模式
特征提取
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度特征提取下城轨客流异常状态识别
来源期刊 哈尔滨工业大学学报 学科
关键词 城市轨道交通 异常检测 深度置信网络 客流量 滑动时间窗口
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 94-100
页数 7页 分类号 U231.92
字数 语种 中文
DOI 10.11918/201907013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (85)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(9)
  • 参考文献(2)
  • 二级参考文献(7)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
城市轨道交通
异常检测
深度置信网络
客流量
滑动时间窗口
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工业大学学报
月刊
0367-6234
23-1235/T
大16开
哈尔滨市南岗区西大直街92号
14-67
1954
chi
出版文献量(篇)
7855
总下载数(次)
10
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导