作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于氨基酸的16种分类模型,给出蛋白质序列的派生序列,进而结合加权拟熵和LZ复杂度构造出34维特征向量来表示蛋白质序列.借助于贝叶斯分类器对同源性不超过25%的640数据集进行蛋白质结构类预测,准确度达到71.28%.
推荐文章
基于并行多类支持向量机的蛋白质结构预测
蛋白质结构预测
多类支持向量机
并行计算
远同源检测
蛋白质结构预测综述
蛋白质结构预测
深度学习
同源建模
自由建模
综述
蛋白质结构的预测及其应用
蛋白质结构
比较建模
折叠识别
从头计算
一种基于蛋白质交互网络链接预测的新方法
蛋白质交互网络
链接预测
权值网络
相关节点集
剪枝
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种新的蛋白质结构类预测方法
来源期刊 生物信息学 学科 生物学
关键词 蛋白质结构类预测 氨基酸 加权拟熵 LZ复杂度 贝叶斯分类器
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 238-240
页数 3页 分类号 Q71
字数 2663字 语种 中文
DOI 10.3969/j.issn.1672-5565.2012.04.03
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李楠 渤海大学数理学院 13 30 3.0 5.0
2 李春 渤海大学数理学院 25 82 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (2)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(2)
  • 参考文献(1)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蛋白质结构类预测
氨基酸
加权拟熵
LZ复杂度
贝叶斯分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物信息学
季刊
1672-5565
23-1513/Q
大16开
黑龙江省哈尔滨市西大直街92号哈尔滨工业大学邵逸夫科学馆一楼
14-14
2003
chi
出版文献量(篇)
937
总下载数(次)
6
总被引数(次)
4610
论文1v1指导