基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文讨论一类平面薛定谔-泊松方程组孤立波解的性质.利用广义畴数理论和Nehari流形技巧,证明其高能量孤立波解存在无穷结点区域,且基态孤立波解是不变号的.
推荐文章
一类退化反应扩散方程组解的整体存在
非局部源
退化抛物型方程组
整体存在
一类非线性薛定谔泊松方程多解的存在性
薛定谔泊松
Clark定理
非线性
一类薛定谔-泊松方程解的存在性
薛定谔-泊松方程
变号权
解的存在性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一类平面薛定谔-泊松方程组孤立波的存在性
来源期刊 应用数学 学科 数学
关键词 孤立波 平面薛定谔-泊松方程组 高能量
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 471-478
页数 8页 分类号 O175.25
字数 1643字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘三阳 西安电子科技大学数学与统计学院 662 5562 32.0 51.0
2 章国庆 上海理工大学理学院 32 29 3.0 5.0
3 宋宁宁 上海理工大学理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
孤立波
平面薛定谔-泊松方程组
高能量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学
季刊
1001-9847
42-1184/O1
16开
武汉市珞瑜路1037号华中科技大学逸夫科技大楼801
38-61
1988
chi
出版文献量(篇)
2606
总下载数(次)
1
总被引数(次)
7629
论文1v1指导