基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文研究一类拟线性薛定谔方程解的存在性问题.利用山路引理和集中紧性原理,得到该问题的一个非平凡解,推广和完善了已有的结果.
推荐文章
一类薛定谔方程解的高阶可积性
薛定谔方程
Lp高阶可积性
反向H(o)lder性质
靴套技术
一类拟线性薛定谔方程解的存在性
拟线性薛定谔方程
渐近线性
山路引理
强制
一类拟线性椭圆型方程Dirchlet问题的非平凡弱解的存在性
拟线性椭圆型方程
变分泛函
非平凡弱解
RN上一类非线性Schr?dinger-Kirchhoff型方程非平凡解的存在性和多重性
Schr?dinger-Kirchhoff型方程
次临界
非平凡解
变分方法
亏格
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一类拟线性薛定谔方程非平凡解的存在性
来源期刊 应用数学 学科 数学
关键词 拟线性薛定谔方程 集中紧性 山路引理 渐近常数
年,卷(期) 2022,(1) 所属期刊栏目
研究方向 页码范围 208-213
页数 6页 分类号 O177.91
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
拟线性薛定谔方程
集中紧性
山路引理
渐近常数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学
季刊
1001-9847
42-1184/O1
16开
武汉市珞瑜路1037号华中科技大学逸夫科技大楼801
38-61
1988
chi
出版文献量(篇)
2606
总下载数(次)
1
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导