基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
隐马尔可夫因子模型在刻画多元纵向数据的关联性和异质性具有重要作用.在实际应用中,观测数据往往呈现缺失数据.本文在纵向框架内,对缺失的数据提出了一个建模.使用一个多项模型去拟合缺失数据指标,并提出用一系列一维条件分布的联合分布来建模.每个一维条件分布不仅取决于当前变量的观测值,而且也糅合以前的观测值和丢失的信息.在贝叶斯框架内,马尔可夫链蒙特卡罗方法用于实现后验分析.带有Metropolis-Hastings算法的Gibbs采样器被用来从相关的满条件分布中抽取随机样本.后验推断基于这些模拟观测值进行展开.我们进行了模拟研究.实证结果表明,所提出的方法在模型是正确指定时是十分有效的,而且对模型偏移也具有一定的稳健性.
推荐文章
生物缺失数据处理的贝叶斯模型研究
缺失数据
朴素贝叶斯
分类
基于隐马尔可夫模型的文本情感分析
隐马尔可夫模型
情感分类
AdaBoost算法
基于隐马尔可夫模型的运动目标轨迹识别
轨迹识别
运动分析
行为模式
隐马尔可夫模型
基于隐马尔可夫模型的3D手写识别方法
手写识别
加速度传感器
隐马尔可夫模型
快速傅里叶变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 带有缺失数据的纵向隐马尔可夫因子模型的贝叶斯分析
来源期刊 应用数学 学科 其他
关键词 隐马尔可夫模型 因子分析模型 缺失机制 MCMC抽样 Gibbs抽样器
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 457-468
页数 12页 分类号 OO212.8|O212.4
字数 8472字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 夏业茂 南京林业大学理学院 19 32 3.0 4.0
5 陈宣 南京林业大学理学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (12)
参考文献  (14)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (3)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(4)
  • 参考文献(1)
  • 二级参考文献(3)
1984(2)
  • 参考文献(1)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(4)
  • 参考文献(1)
  • 二级参考文献(3)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
隐马尔可夫模型
因子分析模型
缺失机制
MCMC抽样
Gibbs抽样器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学
季刊
1001-9847
42-1184/O1
16开
武汉市珞瑜路1037号华中科技大学逸夫科技大楼801
38-61
1988
chi
出版文献量(篇)
2606
总下载数(次)
1
总被引数(次)
7629
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导