基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统卡尔曼滤波(KF)适用于白噪声数据的处理,当机动目标跟踪系统的噪声数据存在有色噪声时,采用KF解算的精度降低,不能满足高精度导航的要求.一步相关卡尔曼滤波(OCKF)虽能用于抵制有色噪声的影响,但不适用于高阶有色噪声模型,缺乏一定的适用性,因此提出一种处理有色噪声的多步相关卡尔曼滤波(MCKF)新算法:利用历元噪声的相关性特性,构建多步相关的噪声协方差矩阵,通过线性变换,得到改进的状态协方差公式和增益矩阵.仿真结果表明,MCKF算法在状态噪声为有色噪声或者观测噪声为有色噪声以及两者皆为有色噪声的情况下,均能有效减弱有色噪声在机动目标跟踪过程中对系统状态的扰动,提高滤波的估计精度.
推荐文章
迭代无味卡尔曼滤波的目标跟踪算法
送代扩展卡尔曼滤波
迭代无味卡尔曼滤波
统计正交
目标跟踪
扩展卡尔曼滤波的目标跟踪优化算法
扩展卡尔曼滤波
目标跟踪
多普勒量测
跟踪精度
色噪声下卡尔曼滤波磁光成像焊缝跟踪算法
焊缝跟踪
磁光成像
色噪声
卡尔曼滤波
基于粒子群算法和卡尔曼滤波的运动目标跟踪算法
粒子群算法
卡尔曼滤波
运动目标跟踪
灰度统计特性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 有色噪声下的目标跟踪卡尔曼滤波新算法
来源期刊 中国惯性技术学报 学科 地球科学
关键词 目标跟踪 白噪声 有色噪声 卡尔曼滤波
年,卷(期) 2018,(6) 所属期刊栏目 控制与动力学
研究方向 页码范围 830-834
页数 5页 分类号 P207.2
字数 4041字 语种 中文
DOI 10.13695/j.cnki.12-1222/o3.2018.06.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林旭 成都理工大学地球科学学院 7 3 1.0 1.0
2 刘俊钊 成都理工大学地球科学学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (24)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (10)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
白噪声
有色噪声
卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国惯性技术学报
双月刊
1005-6734
12-1222/O3
大16开
天津市邮政63分箱75分箱
1989
chi
出版文献量(篇)
2949
总下载数(次)
4
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导