提出一种用于虹膜定位的差分进化算法(modified differential evolution,MDE).MDE和原始差分进化算法(differential evolution,DE)主要有3点不同:第一,MDE采用了基于混沌序列的尺度因子和基于均匀分布的交叉率,这有助于提高候选解的多样性;第二,MDE使用中心解来修正最差解的变异操作,这有助于提高候选解的质量;第三,MDE使用最好解来帮助受困解摆脱局部最优点.在搜索边缘前,两种有效的去噪方法被用来减少虹膜图像中噪声的影响.去噪后,再使用MDE和其他4种方法来进行虹膜定位.在中科院(Chinese Academy of Sciences Institute of Automation,CASIA)眼图数据库中选择200幅来自不同个体的虹膜图像来验证和比较MDE及其他4种方法的效率.实验结果表明,与其他4种方法相比,MDE使用更少的执行时间来定位瞳孔边缘和虹膜边缘.