基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以花生检测国家标准GB/T 5497为基础,采用近红外光谱检测技术对花生含水率是否达标进行检测.实验配制了30个不同含水率的花生样本,其中18个样本含水率达到国家标准,12个未达标,将样本分为训练集和测试集,通过近红外实验获取不同含水率的花生对不同波长光的吸收情况,将采集的数据作为BP神经网络的输入参数,在训练集对神经网络进行学习和训练,然后采用该模型,对测试集花生含水率是否达标进行测试.实验表明,基于近红外光谱技术和神经网络的识别方法可全部正确识别测试集样本.
推荐文章
应用近红外光谱技术检测木材含水率的方法
近红外光谱技术
木材含水率
偏最小二乘法
混合树种
基于近红外光谱不同波段的红松木材含水率预测分析
近红外光谱
木材含水率
偏最小二乘法
不同波段
近红外光谱和机器视觉信息融合的土壤含水率检测
土壤含水率
信息融合
近红外光谱
机器视觉
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于近红外光谱特性分析的花生含水率检测
来源期刊 食品科学技术学报 学科 工学
关键词 近红外检测 人工神经网络 含水率检测 花生品质
年,卷(期) 2013,(5) 所属期刊栏目 基础研究
研究方向 页码范围 50-54
页数 5页 分类号 TS210.7|TS207.3
字数 2436字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈天华 北京工商大学计算机与信息工程学院 79 759 16.0 23.0
2 李月 北京工商大学计算机与信息工程学院 4 11 2.0 3.0
3 雷春宁 北京工商大学计算机与信息工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (157)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (36)
二级引证文献  (2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
近红外检测
人工神经网络
含水率检测
花生品质
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
食品科学技术学报
双月刊
2095-6002
10-1151/TS
大16开
北京海淀区阜成路33号 北京工商大学《食品科学技术学报》编辑部
1983
chi
出版文献量(篇)
2093
总下载数(次)
8
总被引数(次)
16411
论文1v1指导